TYPE 2 DIABETES AND METABOLIC SYNDROME IN OBESE CHILDREN – A REALITY

Ionela Tămăşan¹, Corina Paul¹, I Velea¹, I Popa¹

¹Clinic II Pediatrics – University of Medicine ang Pharmacy "V. Babes" Timisoara

Abstract

By the end of the 20th century the incidence of type 2 diabetes mellitus (T2DM) in children had increased dramatically. Once considered a disease of the overweight, middle age person, the incidence of type 2 diabetes is rising rapidly in children and adolescents worldwide, with the highest prevalence in those of American–Indian, Hispanic, African–American, and Asian descent (1,2). The alarming incidence and prevalence of diabetes has been attributed to increasing obesity among younger people (3). The hallmark of type 2 diabetes in the young, as in most adults, is insulin resistance (4, 5). On a global basis, the rise in T2DM rates mirrors the growth in urbanization and economic development – obesity appears to be the key link (6, 7). **Key words:** childhood, diabetes, obesity, insulino-resistance.

Introduction

T2DM occurs when insulin secretion is inadequate to meet the increased demand posed by insulin resistance (8). T2DM is commonly associated with other features of the insulin resistance syndrome (hyperlipidemia, hypertension, acanthosis nigricans, ovarian hyperandrogenism, nonalcoholic fatty liver disease -NAFLD) (9).

Diagnosis of type 2 diabetes (10):

Diagnostic criteria for diabetes are based on blood glucose measurements and the presence or absence of symptoms (11, 12). Diabetes is diagnosed when:

• A fasting plasma glucose (FPG) is \geq 7.0 mmol/l (126 mg/dl) or

• The post challenge plasma glucose is >11.1 mmol/l (200 mg.dl) or

• Symptoms of diabetes and a casual plasma glucose ≥ 200 mg/dl (11.1 mmol/L).

Previously, the majority of cases of diabetes in the pediatric population have been type 1. However, the increasing incidence of type 2 diabetes in this population presents a challenge to the clinician, who must be able to distinguish between type 1 and type 2 diabetes in children, to optimize therapy (Table 1).

- with increasing obesity in childhood, as many as 15–25% of newly diagnosed T1DM (or monogenic diabetes) patients may be obese.
- the significant number of pediatric patients with T2DM demonstrating ketonuria or ketoacidosis at diagnosis
- There is considerable overlap in insulin or C-peptide measurements between T1DM, T2DM and MODY at onset of diabetes and over the first year or so. The role of C peptide may be more helpful in established diabetes as persistent elevation of C-peptide above the level of normal would be unusual in T1DM after 12–24 months.

	T1DM	T2DM	MODY
Genetics	poligenic	poligenic	monogenic
Age at onset	6 months to young adulthood	Mean age 12-14 years	Often post pubertal
Course	Most often acute,	Variable; from slow, mild	Variable
	rapid	(often insidious) to severe	
Autoimmunity	Yes	No	No
Obesity	Population frequency	Increased frequency	Population frequency
Achantosis No Yes		Yes	No
nigricanns			
Parent with	2-4 %	80 %	90 %
diabestes			

Table 1. Major characteristics of T1DM/T2DM/MODY

The American Diabetes Association recommends percentile for age and screening for diabetes among children with a BMI of > 85th for T2DM (Table 2).

percentile for age and gender, with 2 additional risk factors for T2DM (Table 2).

Overwe	eight or at risk for overweight
\triangleright	BMI >85th percentile for age and gender; or
\succ	Body weight for height >85th percentile; or
\triangleright	Body weight >120% of ideal for height
×	Family history of T2DM in first- or second-degree relatives
> 1105	Family history of T2DM in first- or second-degree relatives
\triangleright	Race/ethnicity (American Indian, black, Hispanic, Asian/Pacific Islander)
\succ	Signs of insulin resistance or conditions associated with insulin resistance (acanthosis
	nigricans, hypertension, dyslipidemia, polycystic ovary syndrome)
\triangleright	Age of screening initiation: 10 y or at onset of puberty if puberty occurs at a younger
	age
\checkmark	Frequency of testing: Every 2 years

T2DM and the insulin resistance syndrome

Insulin resistance is an impaired response to the physiologic effects of insulin, including effects on glucose, lipid, and protein metabolism, and on vascular endothelial function.

Glucose homeostasis is maintained by insulin secretion, insulin action, hepatic glucose production, and cellular glucose uptake (13).

The onset of puberty also contributes to insulin resistance, with insulin sensitivity decreasing by approximately 30% and compensatory increases in insulin secretion (14, 15). All children become more insulin resistant at the time of puberty. Insulin resistance increases immediately at the beginning of puberty, peaks at midpuberty, and then declines to nearly prepubertal levels by early adulthood. Girls are more insulin resistant than boys during puberty which is related in part to differences in adiposity between the sexes. Growth hormone has been considered a contributing factor in the development of insulin resistance during puberty, with an inverse correlation between growth hormone levels and insulin action

Diabetes is only one manifestation of the insulin resistance syndrome or the MS (metabolic syndrome). Other associations include:

- Obesity
- Hypertension
- Nephropaty (albuminuria)
- Dyslipidemia (Hypertriglyceridemia and decreased high-density lipoprotein cholesterol)
- Ovarian hyperandrogenism and premature adrenarche (16)
- NAFLD (non-alcoholic fatty liver disease): Hepatic steatosis is present in 25–45% of adolescents with T2DM
- Systemic inflammation: elevated C-reactive protein, inflammatory cytokines in obese

adolescents have been associated with increased risk for cardiovascular disease in adults (17).

Management goals in obese - diabetics childs :

- Weight loss
- Increase in exercise capacity
- Normalization of glycemia

• Control of comorbidities: including hypertension, dyslipidemia, nephropathy, and hepatic steatosis

Treatment which includes physical activity and a well balanced diet, with the appropriate amount of carbohydrates and protein to maintain a healthy weight, is vital. Further studies evaluating the long-term benefit of diet and exercise should be conducted in children and adolescents (19).

Pharmacologic therapy should be implemented if glycemic goals are not achieved through proper diet and increased physical activity (maintaining euglycemia with metformin, sulfonylureas, thiazolinediones, and insulin is recommended). – Table 4.

The first medication used should be metformin \triangleright (20). Metformin acts on insulin receptors in liver, muscle, and fat tissue, with a predominant action on the liver. An initial anorexic effect may promote weight loss. Long-term use is associated with a 1-2% reduction in HbA1c. Intestinal side effects (transient abdominal pain, diarrhea, nausea) may occur. It has the advantage over sulfonylureas of similar reduction in HbA1c without the risk of hypoglycemia. Despite hyperinsulinemia and insulin resistance, relatively small doses of supplemental insulin are often effective. If glycemic control on oral agents is inadequate, a long-acting insulin analogue may provide satisfactory therapy without meal related therapy. Metformin should be continued to improve insulin sensitivity (21).

JURNALUL PEDIATRULUI – Year XIII, Vol. XIII, Nr. 49-50, january-june 2010

	I hree or more of the following							
1.	Cook et al. Arch Pediatr Adolesc Med, 2003; 157, 821-74 Fasting glucose ≥110 mg/dL	de Ferranti et al. Circulation, 2004; 110, 2494-721 Fasting glucose $\geq 6.1 \text{ mmol/L}$ ($\geq 110 \text{ mg/dL}$)	Cruz et al. <i>J</i> Clin Endocrinol Metab, 2004; 89, 108-1322 Impaired glucose tolerance (ADA criterion)	Weiss et al. <i>N</i> <i>Engl J Med</i> , 2004; 350, 2362-743 Impaired glucose tolerance (ADA criterion)	Ford et al. Diabetes Care, 2005; 28, 878- 8144 Fasting glucose ≥110 mg/dL (additional analysis with ≥100 mg/dL)			
2.	WC ≥90th percentile (age- and sex- specific, NHANES III)	WC >75th percentile	WC ≥90th percentile (age-, sex- and race- specific, NHANES III)	BMI $-Z$ score ≥ 2.0 (age- and sex-specific)	WC ≥90th percentile (sex- specific, NHANES III)			
3.	Triglycerides ≥110 mg/dL (age-specific, NCEP)	Triglycerides ≥1.1 mmol/L (≥100 mg/dL)	Triglycerides ≥90th percentile (age- and sex- specific, NHANES III)	Triglycerides >95th percentile (age-, sex- and race-specific, NGHS)	Triglycerides ≥110 mg/dL (age-specific, NCEP)			
4.	HDL-C mg/dL (all ages/ sexes, NCEP) (all	HDL-C <1.3 mmol/L (<50 mg/dL)	HDL-C ≤10th percentile (age- and sex- specific, NHANES III)	HDL-C <5th percentile (age-, sex- and race- specific, NGHS)	HDL-C HDL-C , NCEP)			
5.	Blood pressure ≥90th percentile (age-, sex- and height- specific, NHBPEP)	Blood pressure >90th percentile	Blood pressure >90th percentile (age-, sex- and height-specific, NHBPEP)	Blood pressure >90th percentile (age-, sex- and height-specific, NHBPEP)	Blood pressure >90th percentile (age-, sex- and height-specific, NHBPEP)			

Table 3: A range of the published metabolic syndrome definitions in pediatrics (18).

 Three or more of the following

Table 4. Oral antidiabetics.

Oral antidiabetics	Mechanism of Action	Side Effects				
INSULINSENZITIZERS						
Biguanides	Decrease hepatic glucose production	Nausea				
Metformin (the drug of first	Increase muscle glucose uptake and	Diarrhea				
choice)	utilization	Anorexia				
		Lactic acidosis				
Thiazolidinedinediones	Increase insulin sensitivity via	Fluid retention and				
Rosiglitazone	activation of PPAR-g receptors	weight gain				
Pioglitazone						
INSULIN SECRETAGOGUES						
Sulfonylureas	Stimulate first-phase insulin secretion	Late				
Glimiperide (Amaryl)	by blocking K+ channel in β-cells	hyperinsulinemia				
Glipizide		and hypoglycemia				
Tolbutamide		Weight gain				
Chlorpropamide						
Tolazamide						
OTHERS						
Meglitinides	Stimulate first-phase insulin secretion	Hypoglycemia				
Repaglinide	by blocking K+ channel in β-cells	Weight gain				
Nateglinide						
a-Glucoside Inhibitors	Decrease hepatic glucose production	Flatulence				
Acarbose	Delays glucose absorption	Abdominal				
Miglitol		bloating				

JURNALUL PEDIATRULUI – Year XIII, Vol. XIII, Nr. 49-50, january-june 2010

Conclusion

Environmental factors, such as increased caloric intake combined with a sedentary lifestyle, have contributed to obesity and insulin resistance; the key players in the pathogenesis of type 2 diabetes in the young

References

- Scott CR, Smith JM, Cradock, et al. Characteristics of youth-onset and noninsulin-dependent diabetes mellitus and insulin-dependent diabetes mellitus at diagnosis. Pediatrics 1997;100:84-91
- 2. Dabelea D, Hanson RL, Bennett PH, et al. Increasing prevalence of type II diabetes in American Indian children. West J Med 1998;168:11-16
- 3. Young TK, Dean HJ, Flett B, Wood Steiman P. Childhood obesity in a population at high risk for type-2 diabetes. J Pediatr. 2000;136:365-369
- 4. Young TK, Reading J, Elias B, O'Neil JD. Type-2 diabetes in Canada's First Nations: status of an epidemic in progress. CMAJ. 2000;163:561-566.
- 5. Bloomgarden ZT. Type 2 diabetes in the young. Diabetes Care 2004;27:998-1010
- Zimmet P, Alberti KG, Shaw J: Global and societal implications of the diabetes epidemic. Nature 414:782– 787, 2001
- Sicree R, Shaw JE, Zimmet PZ: The global burden of diabetes. In Diabetes Atlas. 2nd ed. Gan D, Ed. Brussels, International Diabetes Federation, 2003, p. 15–71
- DRUET C, TUBIANA-RUFI N, CHEVENNE D, RIGAL O, POLAK M, LEVY-MARCHAL C. Characterization of insulin secretion and resistance in type 2 diabetes of adolescents. J.Clin Endocrinol Metab 2006: 91: 401–404.
- MILLER J, SILVERSTEIN JH, ROSENBLOOM AL. Type 2 diabetes in the child and adolescent. In: LIFSHITZ F (ed) Pediatric Endocrinology: fifth edition, volume 1. New York: Marcel Dekker 2007: pp 169–188
 ISDA D Clinical Partia Construction Conductors 2000
- 10. ISPAD Clinical Practice Consensus Guidelines 2009
- 11. INVITTI C, GUZZALONI G, GILARDINI L, MORBITO F, VIBERTI G. Prevalence and concomitants of glucose intolerance in European obese children and adolescents. Diabetes Care 2003: 26(118-1): 24.

Because type 2 diabetes is increasing at alarming rates in children and adolescents, all health care providers must play an active role in providing education regarding proper nutrition, physical activity, and pharmacologic therapy to patients.

- TRESACO B, BUENO G, MORENO A, GARAGORRI JM, BUENO M. Insulin resistance and impaired glucose tolerance in obese children and adolescents. J Physiol Biochem 2003: 59: 217–224.
- 13. Kahn SE. The importance of the beta-cell in the pathogenesis of type 2 diabetes mellitus. Am J Med. 2000;108(suppl 6a):2S-802
- 14. WABITSCH M, HAUNER H, HERTRAMPF M,MUCHE R, HAY B, MATER H, KRATZER W, DEBATIN K-M, HEINZE E. Type II diabetes mellitus and impaired glucose regulation in Caucasian children and adolescents with obesity living in Germany. Int J Obesity 2004: 28: 307–313.
- 15. American Diabetes Association. Type 2 diabetes in children and adolescents. Diabetes Care 2000;23:381-9
- 16. NORMAN RJ, DEWAILLY D, LEGRO RS, HICKEY TE. Polycystic ovary syndrome. Lancet 2007: 370(9588): 685–697
- 17. KIRPICHNIKOV D, SOWERS JR. Diabetes mellitus and diabetes-associated vascular disease. Trends Endocrinol Metab 2001: 12: 225–230
- 18. IDF definition of metabolic syndrome in children and adolescents
- Ellen Aslander-van Vliet, Carmel Smart and Sheridan Waldron. Nutritional management in childhood and adolescent diabetes. ISPAD Clinical Practice Consensus Guidelines 2006–2007. Pediatric Diabetes 2007: 8: 323– 339
- Jones KL, Arslanian S, Peterokova VA, et al. Effect of metformin in pediatric patients with type 2 diabetes: a randomized controlled trial. Diabetes Care 2003;25:89-94
- 21. BRETZEL RG, NUBER U, LANDGRAF W, OWENS DR, BRADLEY C, LIN Once-daily basal insulin glargine versus thrice-daily prandial insulin lispro in people with type 2 diabetes on oral hypoglycaemic agents (APOLLO): an open randomised controlled trial. Lancet 2008: 371: 1073–1084.

Correspondence to:

Dr. Ionela Tămăşan Clinic II Pediatrics Str. Evlia Celebi no 1-3 300226 Timisoara, Romania Tel: 0256 – 494529 E-mail: ionilop@yahoo.com